- University of Redlands
- Armacost Library
- Research Guides
- PHYSICS
- Browse in the Library

- Introduction to the Basic Concepts of Modern Physics by This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schr#65533;dinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third part addresses the application of Gibbs' statistical methods to quantum systems and in particular to Bose and Fermi gases.Publication Date: 2015-09-11
- Space Physics by This textbook, derived from courses given by three leading researchers, provides advanced undergraduates and graduates with up-to-date coverage of space physics, from the Sun to the interstellar medium. Clear explanations of the underlying physical processes are presented alongside major new discoveries and knowledge gained from space missions, ground-based observations, theory, and modelling to inspire students. Building from the basics to more complex ideas, the book contains enough material for a two-semester course but the authors also provide suggestions for how the material can be tailored to fit a single semester. End-of-chapter problems reinforce concepts and include computer-based exercises specially developed for this textbook package. Free access to the software is available via the book's website and enables students to model the behavior of magnetospheric and solar plasma. An extensive glossary recaps new terms and carefully selected further reading sections encourage students to explore advanced topics of interest.Publication Date: 2016-07-07
- Modern Physics and Technology for Undergraduates by A huge chasm has developed between modern science and undergraduate education. The result of this chasm is that students who are graduating from college are unable to exploit the many opportunities offered by modern science and technology. Modern science and technology widely uses the methods of classical physics, but these modern applications are not reflected in the physics problems often suggested to students. Solving practical problems is a very effective way to inform students about contemporary science, to illustrate the important relationships between modern and classical physics, and to prepare them for future activity in the modern technological environment. The aim of this book is to try to bridge this chasm between modern science and technology and an undergraduate course in physics. The first part of the book gives an overview of "hot" directions in modern physics and technology. The second part includes a brief review of undergraduate physics, followed by problems which are related to those directions. These problems, which are based on some of the latest developments in science and technology, can be solved using the classical physics accessible in a standard undergraduate program. Where necessary, the problems have detailed solutions. The second edition of Modern Physics and Technology for Undergraduates includes six new subsections dealing with the most recent developments in science, and a fully updated and expanded list of problems.Publication Date: 2016-01-01
- How Physics Makes Us Free by In 1687 Isaac Newton ushered in a new scientific era in which laws of nature could be used to predict the movements of matter with almost perfect precision. Newton's physics also posed a profound challenge to our self-understanding, however, for the very same laws that keep airplanes in theair and rivers flowing downhill tell us that it is in principle possible to predict what each of us will do every second of our entire lives, given the early conditions of the universe. Can it really be that even while you toss and turn late at night in the throes of an important decision and it seems like the scales of fate hang in the balance, that your decision is a foregone conclusion? Can it really be that everything you have done and everything you ever will do is determinedby facts that were in place long before you were born? This problem is one of the staples of philosophical discussion. It is discussed by everyone from freshman in their first philosophy class, to theoretical physicists in bars after conferences. And yet there is no topic that remains moreunsettling, and less well understood. If you want to get behind the facade, past the bare statement of determinism, and really try to understand what physics is telling us in its own terms, read this book. The problem of free will raises all kinds of questions. What does it mean to make a decision, and what does it mean to say that ouractions are determined? What are laws of nature? What are causes? What sorts of things are we, when viewed through the lenses of physics, and how do we fit into the natural order? Ismael provides a deeply informed account of what physics tells us about ourselves. The result is a vision that isabstract, alien, illuminating, and-Ismael argues-affirmative of most of what we all believe about our own freedom. Written in a jargon-free style, How Physics Makes Us Free provides an accessible and innovative take on a central question of human existence.Publication Date: 2016-03-03
- Topics in Contemporary Mathematical Physics by This new (second) edition contains a general treatment of quantum field theory (QFT) in a simple scalar field setting in addition to the modern material on the applications of differential geometry and topology, group theory, and the theory of linear operators to physics found in the first edition. All these are introduced without assuming more background on the part of the reader than a good foundation in undergraduate (junior) level mathematical physics. The new material entirely focuses on an introduction to quantum field theory, emphasizing the Feynman path (functional integral) approach to QFT and the renormalization group. With respect to the latter, the focus is on an introduction of its application to critical phenomena in statistical physics, following the outgrowth of the Callan-Symanzik equation originally developed in the context of high energy physics, and the seminal contributions of Kenneth Wilson. One of the overriding aims of the new material is also to draw students' attention to the deep connections between high energy physics and statistical mechanics. The unavoidable technical aspects are explained with a minimum of prerequisite material and jargon, and conceptual understanding is always given prominence before mastery of technical details, but the importance of the latter is never underestimated. Derivational details and motivational discussions are provided in abundance in order to ensure continuity of reading, and to avoid trying the readers' patience.Publication Date: 2016-01-30

At Armacost Library, books are organized with the Library of Congress classification system, and are grouped together by topic. Refer to the following while browsing through the stacks.

- QB: Astronomy
- QC: Physics
- QC 1-175: General physics
- QC 81-114: Weights and measures
- QC 120-168.85: Mechanics
- 170-197: Matter, molecular physics, relativity, quantum theory, and solid state physics
- QC 221-246: Acoustics, sound
- QC 251-338.5: Heat, thermodynamics
- QC 350-467: Optics, light, spectroscopy
- QC 474-496.9: Radiation physics
- QC 501-766: Electricity and magnetism
- QC 770-798: Nuclear and particle physics, atomic energy, radioactivity
- QC 801-809: Geophysics, cosmic physics
- QC 811-849; Geomagnetism
- QC 851-999: Meteorology, climatology